If it's not what You are looking for type in the equation solver your own equation and let us solve it.
c^2-25c=56
We move all terms to the left:
c^2-25c-(56)=0
a = 1; b = -25; c = -56;
Δ = b2-4ac
Δ = -252-4·1·(-56)
Δ = 849
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-25)-\sqrt{849}}{2*1}=\frac{25-\sqrt{849}}{2} $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-25)+\sqrt{849}}{2*1}=\frac{25+\sqrt{849}}{2} $
| 1/3(n-10)=-4 | | x78+100=97 | | (4x-8)/3-(x/6)=2 | | 4a-a(4-a)=0 | | 8w=19 | | 4a-a(4-a)=+ | | 1/2(x-64)=13+8x | | 2x+113+8x+78=180 | | 2=9+b | | 2x+114+8x+78=90 | | (2x-5)+(2x+5)=0 | | 1/2x-3/4=1 | | (4x+3)/6+x/3=2 | | x+6/12=3x+3/16 | | 7/10w-18=5+1/5 | | 2-1/2n=3n+17 | | 10x2−6=9x | | r+17=27 | | 1/4x+8=2x-1 | | r+17=17 | | 5x-15+2x+21=90 | | (4x=3)/6+x/3=2 | | (4x+3)/6+(x/3)=2 | | 10x+1=6x2 | | 3x+(4x+7)+(4x-14)=180 | | (2x+5)+(2x-5)= | | 16=32-4y | | X+11=3x+8 | | 14-x/3=6 | | (12-x)/2=7 | | 6-13y=-33 | | 5+21+2x=x+18 |